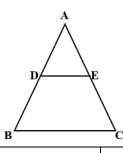


INDIAN SCHOOL AL WADI AL KABIR

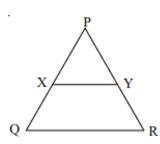
Department: Mathematics


Class X

Worksheet – Triangles

15 - 04 - 2025

Questions of 1 mark each												
Q.1.	In $\triangle DEW$, A and B are points on DE and DW respectively and AB \parallel EW. If AD = 4 cm, DE = 12 cm and BW = 24 cm, the value of DB is:											
	A	6 cm	В	8 cm	С	10 cm	D	12 cm				
Q.2.	The perimeters of two similar triangles ABC and LMN are 60 cm and 48 cm respectively. If LM = 8 cm , then the length of AB is											
	A	10 cm	В	12 cm	С	8 cm	D	6 cm				
Q.3.	In $\triangle ABC$, D and E are points on AB and AC respectively and DE \parallel BC. If AD = x, BD = x + 1,											
	AE = x + 3 and $CE = x + 5$, the value of x is:											
	A	-3	В	3	C	9	D	-9				
Q.4.	\triangle ABC and \triangle PQR are similar triangles such that \angle A = 32° and \angle R = 65°, then \angle B is											
	A	83°	В	32°	С	65°	D	97°				
Q.5.	In two triangles ABC and PQR, if $\frac{AB}{QR} = \frac{BC}{RP} = \frac{CA}{PQ}$, then											
	A	ΔPQR ~ ΔCAB	В	ΔPQR ~ ΔABC	С	ΔPQR ~ ΔCBA	D	ΔPQR ~ ΔBCA				
Q.6.	ABCD is a trapezium in which AB \parallel DC and P, Q are points on AD and BC respectively such that PQ \parallel DC. If PD = 18 cm, BQ = 35 cm and QC = 15 cm, then AD is:											
	Α	55 cm	В	57 cm	C	60 cm	D	42 cm				
Q.7.	In triangles PQR and MST, $\angle P = 55^{\circ}$, $\angle Q = 25^{\circ}$, $\angle M = 100^{\circ}$ and $\angle S = 25^{\circ}$, then											
	A	ΔQPR ~ ΔSTM	В	ΔPQR ~ ΔSTM	С	$\Delta QPR \sim \Delta MST$	D	ΔPQR ~ ΔMTS				


Q.8. In fig, in $\triangle ABC$, $\frac{AD}{BD}$ and $\frac{AE}{CE}$, $\angle ADE = 70^{\circ}$ and $\angle ACB = 50^{\circ}$ then $\angle BAC$ is

 \mathbf{C}

A 70° B 50°

In the given figure, XY || QR and $\frac{PX}{XO} = \frac{PY}{YR} = \frac{1}{2}$, then

80°

D

D

A XY = QR

Q.9.

B $XY = \frac{1}{3}QR$

 $C \qquad XY = \frac{2}{3} QR$

 $D \qquad XY = \frac{1}{2} QR$

Q.10. Which of the following are DEFINITELY similar to each other?

В

A any two rhombuses

any two right triangles

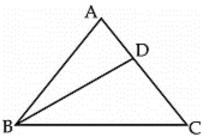
C any two regular pentagons

any two isosceles triangles

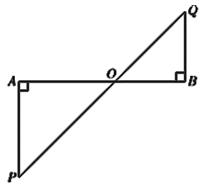
60°

ASSERTION AND REASONING

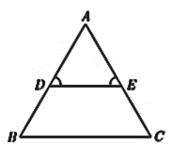
DIRECTION: In question number 11, a statement of **Assertion** (**A**) is followed by a statement of **Reason** (**R**). Choose the correct option

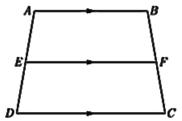

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A)
- (b) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion (A)
- (c) Assertion (A) is true but reason (R) is false.
- (d) Assertion (A) is false but reason (R) is true.

Q.11. Assertion: If $\triangle ABC$ and $\triangle PQR$ are congruent triangles, then they are also similar triangles.


Reason: All congruent triangles are similar but similar triangles need not be congruent.

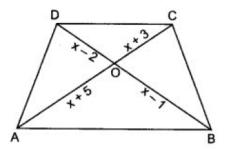
Questions of 2 marks each


Q.12. In the given figure, ABC is a triangle in which AB = AC and D is a point on AC such that $BC^2 = AC \times CD$. Prove that BD = BC.

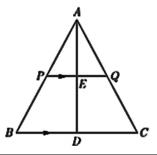

Q.13. In the given figure, if $\angle A = 90^\circ$, $\angle B = 90^\circ$, OB = 4.5cm OA = 6 cm and AP = 4 cm then find QB.

Q.14. In Figure $\angle D = \angle E$ and $\frac{AD}{DB} = \frac{AE}{EC}$, prove that $\triangle BAC$ is an isosceles triangle.

Q.15. In the given figure, if ABCD is a trapezium in which AB | | CD | | EF, then prove that $\frac{AE}{ED} = \frac{BF}{FC}$.

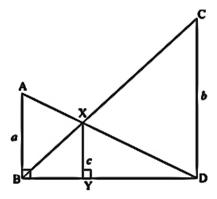


Q.16. A vertical stick 12m long casts a shadow 8m long on the ground. At the same time a tower casts the shadow 40m long on the ground. Determine the height of the tower.

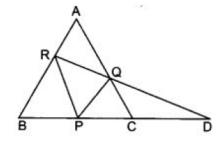

Questions of 3 marks each

Q.17. In the given figure, if AB || DC, find the length of AC

and BD.

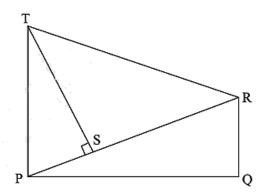


Q.18. In a ΔABC, let P and Q be points on AB and AC respectively such that PQ | | BC. Prove that the median AD bisects PQ.

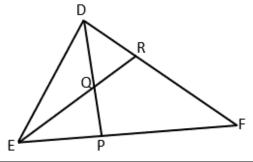


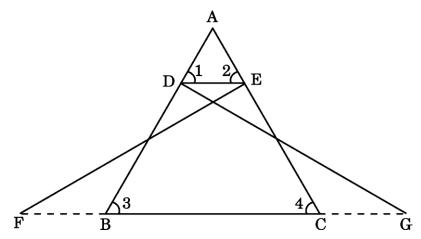
Q.19. In the figure, if $\angle ABD = \angle XYD = \angle CDB = 90^{\circ}$.

AB= a, XY = c and CD = b, then prove that c(a + b) = ab.



Q.20. In the given figure PQ \parallel BA; PR \parallel CA. If PD = 12 cm. Find BD \times CD.

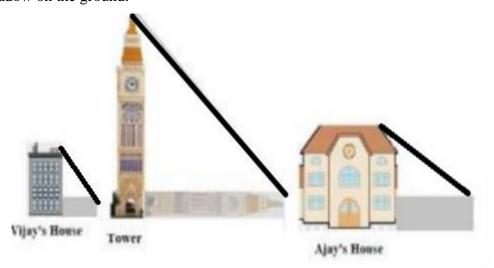

In the given figure, RQ and TP are perpendicular to PQ, also TS \perp PR prove that ST. RQ = PS. PQ.


Questions of 5 marks each

Q.22. P is the midpoint of EF and Q is the midpoint of DP.If EQ when produced meets DF at R, prove that

 $RD = \frac{1}{3}DF$. (Hint: Draw PS ||QR)

Q.23. In the given figure, \triangle FEC \cong \triangle GDB and $\angle 1 = \angle 2$. Prove that \triangle ADE \sim \triangle ABC.



Q.24.

Through the mid-point M of the side CD of a parallelogram ABCD, the line BM is drawn intersecting AC in L and AD (produced) in E. Prove that EL = 2BL.

Case study question (4 marks)

Q.25. Vijay is trying to find the average height of a tower near his house. He is using the properties of similar triangles. The height of Vijay's house is 20m when Vijay's house casts a shadow 10m long on the ground. At the same time, the tower casts a shadow 50m long on the ground and the house of Ajay casts 20m long shadow on the ground.

Based on the above information, answer the following questions:

- (i) What is the height of the tower?
- (ii) What will be the length of the shadow of the tower when Vijay's house casts a shadow of 12m?
- (iii) What is the height of Ajay's house?
- (iv) When the tower casts a shadow of 40m, at the same time what will be the length of the shadow of Ajay's house?

ANSWERS												
Q.1	D	Q.2	A	Q.3	В	Q.4	A	Q.5	A			
Q.6	D	Q.7	A	Q.8	D	Q.9	В	Q.10	С			
Q.11	a	Q.13	3 cm	Q.16	60m	Q.17	22 cm,11cm	Q.20	144 cm ²			
Q.25	(i) 100 m	Q.25	(ii) 60 m	Q.25	(iii) 40 m	Q.25	(iv) 16m					